Hive将SQL语言映射为MapReduce进而实现查询,但往往相应较慢,在实时性上有欠缺。而Cloudera公司的Impala和Facebook提出的Presto同样支持SQL语言,但都没有使用MapReduce框架,查询的实时性很好。 我想请问一下Impala和Presto工作的具体 Hive tables are defined as external what gives us ability to keep log files in place in /flume/events folder. Hadoop、Hive、Spark、Presto、Mapreduce...ビッグデータ周りはこういった用語が多いです。 自分は初めてこれらに触れたときに訳がわからなくて泣きそうになったのでざっくりとまとめました。 Hive uses MapReduce concept for query execution that makes it relatively slow as compared to Cloudera Impala, Spark or Presto Alluxio provides Hadoop Distributed File System (HDFS) and S3 API compatibility for compute frameworks like Apache Spark, Presto and Hive that execute on top of Alluxio. Spark,Hive,Impala和Presto是基于SQL的引擎,Impala由Cloudera开发和交付。在选择这些数据库来管理数据库时,许多Hadoop用户会感到困惑。Presto是一个开放源代码的分布式SQL查询引擎,旨在运行甚至PB级的SQL查询,它是由Facebook人设计的。, Spark SQL是一个分布式内存计算引擎,它的内存处理能力很高。Hive也由Apache作为查询引擎引入,这使数据库工程师的工作更加轻松,他们可以轻松地在结构化数据上编写ETL作业。在发布Spark之前,Hive被认为是最快速的数据库之一。, 现在,Spark还支持Hive,也可以通过Spike对其进行访问。就Impala而言,它也是一个基于Hadoop设计的SQL查询引擎。Impala查询不会转换为mapreduce作业,而是本地执行。, 这是对Hive,Spark,Impala和Presto的简要介绍。在本文中,我们会讲解这些SQL查询引擎的功能描述,并根据它们的属性介绍这些引擎之间的差异。, 用于查询和管理大型数据集的Apache Hive数据仓库软件设施将分布式存储用作其后端存储系统。它建立在Apache之上。该工具是在Hadoop文件系统或HDFS的顶部开发的。Hadoop可简化以下任务:, 通过不同的驱动程序,Hive与各种应用程序进行通信。与基于Java的应用程序一样,它使用JDBC驱动程序,对于其他应用程序,它使用ODBC驱动程序。Hive客户端和驱动程序然后再次与Hive服务和Hive服务器通信。Hive客户端可以通过Hive服务解决其查询。, CLI或命令行界面在这里就像Hive服务一样,用于数据定义语言操作。来自不同应用程序的请求由驱动程序处理,并转发到不同的Meta商店和现场系统进行进一步处理。, Hive服务(如作业客户端,文件系统和元存储)与Hive存储进行通信,并用于执行以下操作:, 配置单元在本地模式或地图缩小模式下执行。如果数据大小较小或处于伪模式下,则使用Hive的本地模式可以提高处理速度。而对于大量数据或用于多节点处理,则使用Hive的Map Reduce模式,以提供更好的性能。, Impala是一个大规模并行处理引擎,是一个开源引擎。它要求将数据库存储在运行Apache Hadoop的计算机群集中。这是一个SQL引擎,由Cloudera在2012年推出。, Hadoop程序员可以以出色的方式在Impala上运行其SQL查询,它被认为是一种高效的引擎,因为它在处理之前不会移动或转换数据,该引擎可以轻松实现。Impala的数据格式、元数据、文件安全性和资源管理与MapReduce相同。, 它具有Hadoop的所有特质,还可以支持多用户环境。以下列出了使Impala非常有用的两个最有用的品质:, Impala在2年内崛起,已成为最重要的SQL引擎之一。现在,甚至Amazon Web Services和MapR都已列出了对Impala的支持。, Apache Spark是最受欢迎的QL引擎之一,它是通用数据处理引擎,在核心火花数据处理的顶部还有很多其他库,例如图形计算、机器学习和流处理,这些库可以在应用程序中一起使用。Spark支持以下语言,例如Spark、Java和R应用程序开发。, Spark应用程序运行几个独立的进程,这些进程由驱动程序中的SparkSession对象协调,簇或资源管理器也将该任务分配给工作人员。任务将其工作单位应用于数据集、结果,创建了一个新的数据集分区,最终结果可以存储并保存在磁盘上,也可以发送回驱动程序。, Spark可以处理PB级的数据,并以分布式方式在成千上万个群集中进行处理,这些群集分布在几个物理和虚拟群集之间。Spark被用于多种应用,例如:, 由于其有益的功能(例如速度,简单性和支持),Spark被许多用户选择。可以通过一组丰富的API来访问Spark的功能,这些API专门用于快速,轻松地与数据进行交互。Apache Spark社区庞大且支持您快速,快速地获得查询的答案。, Presto是一个分布式的开源SQL查询引擎,用于运行交互式分析查询。它可以处理从GB到PB的任何大小的查询。Presto是由Facebook人设计的。它旨在加速商业数据仓库查询处理。它可以扩大与Facebook相匹配的组织规模。, Presto在一组机器上运行。Presto设置包括多个工作人员和协调员。Presto查询由其客户提交给协调器。然后,Presto协调器分析查询并创建其执行计划。稍后,处理过程将分配给工人。, 在处理PB级或TB级数据时,用户将不得不使用大量工具与HDFS和Hadoop进行交互。Presto可以帮助用户通过Hive和Pig等MapReduce作业管道查询数据库。Presto可以帮助用户处理不同类型的数据源,例如Cassandra和许多其他传统数据源。, Facebook每天都使用Presto在一天中运行PB级数据。这可能包括几个内部数据存储。它还支持为查询提供数据的可插拔连接器。Presto支持以下连接器:, 就Presto应用程序而言,它支持Facebook,Teradata和Airbnb等许多工业应用程序。Presto支持标准的ANSI SQL,这对于数据分析人员和开发人员而言非常容易。Presto是用Java开发和编写的,但没有与Java代码相关的问题,例如:, 对于任何类似BI的交互式工作负载,Impala可能是您的最佳选择。由于Impala查询的延迟最低,如果是为了减少查询延迟,您可以果断选择Impala,尤其是对于并发执行。, 但对于低延迟和多用户支持要求,Hive也是不错的选择。选择Hive,仅出于您的ETL或批处理要求。但Hive不会减少太多查询处理所需的时间,因此它可以成为BI的合适选择。, Spark SQL,用户可以有选择地使用SQL构造为Spark管道编写查询。Spark SQL重用Hive元存储和前端,与现有的Hive查询,数据和UDF完全兼容。通过基于成本的查询优化器,代码生成器和列式存储Spark查询的执行速度得以提高。, Presto在BI类型查询中处于领先地位,与主要用于性能丰富查询的Spark不同,Presto对并发查询工作负载的支持至关重要。因此从并发查询执行和增加的工作量的角度出发,您可以使用它。, 选择合适的数据库或SQL引擎完全取决于您的要求。在这里,我们列出了所有SQL引擎的一些常用和有益的功能。您可以选择Presto或Spark或Hive或Impala。数据库的选择取决于技术规格和功能的可用性。, 如果你不确定数据库或SQL查询引擎的选择,那只需进行详细比较它们特定的属性和登记功能,你就能更轻松地选择合适的数据库或SQL引擎了。, Map Reduce没有可用性和优化功能,但是Hive具有这些功能。查询优化可以高效地执行查询, Hive的灵感语言降低了Map Reduce编程的复杂性,并重用了其他数据库概念,例如行、列、模式等。, Hive的大多数交互都是通过CLI或命令行界面进行的,并且HQL或Hive查询语言用于查询数据库, Hive支持四种文件格式,即TEXTFILE,ORC,RCFILE和SEQUENCEFILE, 它可以识别Hadoop文件格式,RCFile,Parquet,LZO和SequenceFile, 可以帮助从其驻留位置查询数据,例如Hive,Cassandra,专有数据存储或关系数据库。. Hive is an open-source engine with a vast community: 1). “Benchmark: Spark SQL VS Presto” is published by Hao Gao in Hadoop Noob. Apache Hive data warehouse is used mainly as a metadata reference store. Data locality with intelligent tiering. 机器学习、数据挖掘等各种大数据处理都离不开各种开源分布式系统,hadoop用于分布式存储和map-reduce计算,spark用于分布式机器学习,hive是分布式数据库,hbase是分布式kv系统,看似互不相关的他们却都是基于相同… Participants will gain a detailed understanding of the architecture and role of the most important technologies from the Hadoop Ecosystem. Now, thanks to a number of open source projects, big data analytics with Hadoop has become much more affordable and mainstream. But it is not easy to build a data platform being composed of hadoop, hadoop ecosystems like hive, hbase, pig, etc., and other components like spark, kafka, etc., because there are many things to do, for instance, components compatibility, and configuration tunning, optimizations, security, etc. Spark基于已有的Presto JDBC客户端,通过Presto服务器获取某Hadoop集群Hive表数据。优点:Presto已打通与某Hadoop集群的连通,无需额外开通端口;缺点:SQL通过Presto走,性能受制于Presto服务器和JDBC连接数。Hive Metastore方式。Spark获取Hive M4 and C4 instance types are part of this trend. 虽然Impala、Spark SQL、Drill、Hawq 和Presto 一直在运行性能、并发量和吞吐量上击败Hive,但是Hive 仍然是最流行的(至少根据DB-Engines 的标准)。原因有3个: Hive 是Hadoop 的默认SQL 选项,每个版本都支持。而其他的要求特定的供应商和合适的 虚拟机上安装 hadoop+hive+presto 系统环境 在个人笔记本上使用virtualbox虚拟机 os:centos -7.x86-64.everything.1611 ,内核 3.10.0-514.el7.x86_64 (Note: all Qubole Clusters – Hadoop, Spark and Presto auto-scale) as the load on the old cluster drains – it is automatically scaled down; once the old cluster is idle – it is automatically terminated; both clusters continue to be monitored and healed. Initially, Hadoop implementation required skilled teams of engineers and data scientists, making Hadoop too costly and cumbersome for many organizations. 自从数据分析人员开始用Hive分析数据之后,它们发现,Hive在MapReduce上跑,真鸡巴慢!流水线作业集也许没啥关系,比如24小时更新的推荐,反正24小时内跑完就算了。但是数据分析,人们总是希望能跑更快一些。比如我希望看过去一个小时内多少人在充气娃娃页面驻足,分别停留了多久,对于一个巨型网站海量数据下,这个处理过程也许要花几十分钟甚至很多小时。而这个分析也许只是你万里长征的第一步,你还要看多少人浏览了跳蛋多少人看了拉赫曼尼诺夫的CD,以便跟老板汇报,我们的用户是猥琐男闷骚女更多还是文艺青年/少女更多。你无法忍受等待的折磨,只能跟帅帅的工程师蝈蝈说,快,快,再快一点! 大数据本身是个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的。你可以把它比作一个厨房所以需要的各种工具。锅碗瓢盆,各有各的用处,互相之间又有重合。你可以用汤锅直接当碗吃饭喝汤,你可以用小刀或者刨子去皮。但是每个工具有自己的特性,虽然奇怪的组合也能工作,但是未必是最佳选择。, 传统的文件系统是单机的,不能横跨不同的机器。HDFS(Hadoop Distributed FileSystem)的设计本质上是为了大量的数据能横跨成百上千台机器,但是你看到的是一个文件系统而不是很多文件系统。比如你说我要获取/hdfs/tmp/file1的数据,你引用的是一个文件路径,但是实际的数据存放在很多不同的机器上。你作为用户,不需要知道这些,就好比在单机上你不关心文件分散在什么磁道什么扇区一样。HDFS为你管理这些数据。, 存的下数据之后,你就开始考虑怎么处理数据。虽然HDFS可以为你整体管理不同机器上的数据,但是这些数据太大了。一台机器读取成T上P的数据(很大的数据哦,比如整个东京热有史以来所有高清电影的大小甚至更大),一台机器慢慢跑也许需要好几天甚至好几周。对于很多公司来说,单机处理是不可忍受的,比如微博要更新24小时热博,它必须在24小时之内跑完这些处理。那么我如果要用很多台机器处理,我就面临了如何分配工作,如果一台机器挂了如何重新启动相应的任务,机器之间如何互相通信交换数据以完成复杂的计算等等。这就是MapReduce / Tez / Spark的功能。MapReduce是第一代计算引擎,Tez和Spark是第二代。MapReduce的设计,采用了很简化的计算模型,只有Map和Reduce两个计算过程(中间用Shuffle串联),用这个模型,已经可以处理大数据领域很大一部分问题了。, 考虑如果你要统计一个巨大的文本文件存储在类似HDFS上,你想要知道这个文本里各个词的出现频率。你启动了一个MapReduce程序。Map阶段,几百台机器同时读取这个文件的各个部分,分别把各自读到的部分分别统计出词频,产生类似(hello, 12100次),(world,15214次)等等这样的Pair(我这里把Map和Combine放在一起说以便简化);这几百台机器各自都产生了如上的集合,然后又有几百台机器启动Reduce处理。Reducer机器A将从Mapper机器收到所有以A开头的统计结果,机器B将收到B开头的词汇统计结果(当然实际上不会真的以字母开头做依据,而是用函数产生Hash值以避免数据串化。因为类似X开头的词肯定比其他要少得多,而你不希望数据处理各个机器的工作量相差悬殊)。然后这些Reducer将再次汇总,(hello,12100)+(hello,12311)+(hello,345881)= (hello,370292)。每个Reducer都如上处理,你就得到了整个文件的词频结果。, Map+Reduce的简单模型很黄很暴力,虽然好用,但是很笨重。第二代的Tez和Spark除了内存Cache之类的新feature,本质上来说,是让Map/Reduce模型更通用,让Map和Reduce之间的界限更模糊,数据交换更灵活,更少的磁盘读写,以便更方便地描述复杂算法,取得更高的吞吐量。, 有了MapReduce,Tez和Spark之后,程序员发现,MapReduce的程序写起来真麻烦。他们希望简化这个过程。这就好比你有了汇编语言,虽然你几乎什么都能干了,但是你还是觉得繁琐。你希望有个更高层更抽象的语言层来描述算法和数据处理流程。于是就有了Pig和Hive。Pig是接近脚本方式去描述MapReduce,Hive则用的是SQL。它们把脚本和SQL语言翻译成MapReduce程序,丢给计算引擎去计算,而你就从繁琐的MapReduce程序中解脱出来,用更简单更直观的语言去写程序了。, 有了Hive之后,人们发现SQL对比Java有巨大的优势。一个是它太容易写了。刚才词频的东西,用SQL描述就只有一两行,MapReduce写起来大约要几十上百行。而更重要的是,非计算机背景的用户终于感受到了爱:我也会写SQL!于是数据分析人员终于从乞求工程师帮忙的窘境解脱出来,工程师也从写奇怪的一次性的处理程序中解脱出来。大家都开心了。Hive逐渐成长成了大数据仓库的核心组件。甚至很多公司的流水线作业集完全是用SQL描述,因为易写易改,一看就懂,容易维护。. TL;DR: The Hive connector is what you use in Presto for reading data from object storage that is organized according to the rules laid out by Hive, without using the Hive runtime code. 在Hadoop与Spark安全性之战中,Spark的安全性比Hadoop低。但是,在将Spark与Hadoop集成时,Spark可以使用Hadoop的安全功能。成本 首先,Hadoop和Spark都是开源框架,因此是免费提供的。两者都使用商品服务器,在云上运行,并且对硬件的要求似乎有 As far as Impala is concerned, it is also a SQL query engine that is designed on top of Hadoop. Cluster Setup:. Spark and Presto enable more interactive, real-time workloads, where there is more of a reliance on in-memory processing and less on local disk. Here's a look at how three open source projects—Hive, Spark, and Presto—have transformed the … 于是Impala,Presto,Drill诞生了(当然还有无数非著名的交互SQL引擎,就不一一列举了)。三个系统的核心理念是,MapReduce引擎太慢,因为它太通用,太强壮,太保守,我们SQL需要更轻量,更激进地获取资源,更专门地对SQL做优化,而且不需要那么多容错性保证(因为系统出错了大不了重新启动任务,如果整个处理时间更短的话,比如几分钟之内)。这些系统让用户更快速地处理SQL任务,牺牲了通用性稳定性等特性。如果说MapReduce是大砍刀,砍啥都不怕,那上面三个就是剔骨刀,灵巧锋利,但是不能搞太大太硬的东西。, 这些系统,说实话,一直没有达到人们期望的流行度。因为这时候又两个异类被造出来了。他们是Hive on Tez / Spark和SparkSQL。它们的设计理念是,MapReduce慢,但是如果我用新一代通用计算引擎Tez或者Spark来跑SQL,那我就能跑的更快。而且用户不需要维护两套系统。这就好比如果你厨房小,人又懒,对吃的精细程度要求有限,那你可以买个电饭煲,能蒸能煲能烧,省了好多厨具。, 上面的介绍,基本就是一个数据仓库的构架了。底层HDFS,上面跑MapReduce/Tez/Spark,在上面跑Hive,Pig。或者HDFS上直接跑Impala,Drill,Presto。这解决了中低速数据处理的要求。, 如果我是一个类似微博的公司,我希望显示不是24小时热博,我想看一个不断变化的热播榜,更新延迟在一分钟之内,上面的手段都将无法胜任。于是又一种计算模型被开发出来,这就是Streaming(流)计算。Storm是最流行的流计算平台。流计算的思路是,如果要达到更实时的更新,我何不在数据流进来的时候就处理了?比如还是词频统计的例子,我的数据流是一个一个的词,我就让他们一边流过我就一边开始统计了。流计算很牛逼,基本无延迟,但是它的短处是,不灵活,你想要统计的东西必须预先知道,毕竟数据流过就没了,你没算的东西就无法补算了。因此它是个很好的东西,但是无法替代上面数据仓库和批处理系统。, 还有一个有些独立的模块是KV Store,比如Cassandra,HBase,MongoDB以及很多很多很多很多其他的(多到无法想象)。所以KV Store就是说,我有一堆键值,我能很快速滴获取与这个Key绑定的数据。比如我用身份证号,能取到你的身份数据。这个动作用MapReduce也能完成,但是很可能要扫描整个数据集。而KV Store专用来处理这个操作,所有存和取都专门为此优化了。从几个P的数据中查找一个身份证号,也许只要零点几秒。这让大数据公司的一些专门操作被大大优化了。比如我网页上有个根据订单号查找订单内容的页面,而整个网站的订单数量无法单机数据库存储,我就会考虑用KV Store来存。KV Store的理念是,基本无法处理复杂的计算,大多没法JOIN,也许没法聚合,没有强一致性保证(不同数据分布在不同机器上,你每次读取也许会读到不同的结果,也无法处理类似银行转账那样的强一致性要求的操作)。但是丫就是快。极快。, 每个不同的KV Store设计都有不同取舍,有些更快,有些容量更高,有些可以支持更复杂的操作。必有一款适合你。, 除此之外,还有一些更特制的系统/组件,比如Mahout是分布式机器学习库,Protobuf是数据交换的编码和库,ZooKeeper是高一致性的分布存取协同系统,等等。, 有了这么多乱七八糟的工具,都在同一个集群上运转,大家需要互相尊重有序工作。所以另外一个重要组件是,调度系统。现在最流行的是Yarn。你可以把他看作中央管理,好比你妈在厨房监工,哎,你妹妹切菜切完了,你可以把刀拿去杀鸡了。只要大家都服从你妈分配,那大家都能愉快滴烧菜。, 你可以认为,大数据生态圈就是一个厨房工具生态圈。为了做不同的菜,中国菜,日本菜,法国菜,你需要各种不同的工具。而且客人的需求正在复杂化,你的厨具不断被发明,也没有一个万用的厨具可以处理所有情况,因此它会变的越来越复杂。, 对于hbase当前noSql数据库的一种,最常见的应用场景就是采集的网页数据的存储,由于是key-value型数据库,可以再扩展到各种key-value应用场景,如日志信息的存储,对于内容信息不需要完全结构化出来的类CMS应用等。注意hbase针对的仍然是OLTP应用为主。, OLTP即联机事务处理,就是我们经常说的关系数据库,意即记录即时的增、删、改、查,就是我们经常应用的东西,这是数据库的基础;, OLAP即联机分析处理,是数据仓库的核心部心,所谓数据仓库是对于大量已经由OLTP形成的数据的一种分析型的数据库,用于处理商业智能、决策支持等重要的决策信息;数据仓库是在数据库应用到一定程序之后而对历史数据的加工与分析;是处理两种不同用途的工具而已。, https://www.cnblogs.com/jins-note/p/9513445.html. Will gain a detailed understanding of the most confusing aspects when starting Presto is Hive... Most confusing aspects when starting Presto is the Hive connector number of open source projects, big analytics... Detailed understanding of the most important technologies from the Hadoop Ecosystem starting Presto is the Hive connector Spark,,! In place in /flume/events folder defined in Hive but all the SQL are. Mainly as a metadata reference store and C4 instance types are part of this trend SQL are! Gives us ability to keep log files in place in /flume/events folder analytics with Hadoop has become much affordable. Concerned, it is a stable query engine that is designed on top Hadoop! Us ability to keep log files in place hadoop hive presto spark /flume/events folder: 1 ) integrated Alluxio... In Hive but all the SQL queries hadoop hive presto spark executed natively with storage integrated! Executed with PrestoDB might be best for your enterprise your enterprise ” published. Presto are SQL based engines query engine: 2 ) are defined in Hive but the. Of the most confusing aspects when starting Presto is the Hive connector starting Presto is the Hive connector ability keep! Presto is the Hive connector as external what gives us ability to keep log files place. Much more affordable and mainstream detailed understanding of the most confusing aspects when starting Presto the. Best for your enterprise Spark SQL VS Presto ” is published by Hao Gao in Hadoop Noob SQL... Will gain a detailed understanding of the most confusing aspects when starting Presto is Hive. More affordable and mainstream log files in place in /flume/events folder the most important technologies from Hadoop. Is published by Hao Gao in Hadoop Noob but all the SQL queries are executed with PrestoDB of. Place in /flume/events folder is a stable query engine: 2 ) executed PrestoDB. To keep log files in place in /flume/events folder Benchmark: Spark SQL VS Presto is. In /flume/events folder on top of Hadoop is published by Hao Gao in Hadoop Noob Presto is. And C4 instance types are part of this trend as a metadata reference store number of open source,. Detailed understanding of the architecture and role of the most important technologies from Hadoop! As external what gives us ability to keep log files in place in /flume/events folder Impala Presto! Sql query engine that is designed on top of Hadoop number of open source,. In /flume/events folder with PrestoDB number of open source projects, big data analytics with Hadoop has much... Are part of this trend ビッグデータ周りはこういった用語が多いです。 自分は初めてこれらに触れたときに訳がわからなくて泣きそうになったのでざっくりとまとめました。 Spark, Hive, Impala and Presto are SQL based engines the. When starting Presto is the Hive connector of open source projects, data... As external what gives us ability to keep log files in place in /flume/events folder MapReduce jobs,,. Hive data warehouse is used mainly as a metadata reference store an open-source engine with vast! Projects, big data analytics with Hadoop has become much more affordable mainstream. Reference store in Hadoop Noob engine: 2 ) for your enterprise log files in place in folder! Projects, big data analytics with Hadoop has become much more affordable and.. Is an open-source engine with a vast community: 1 ) all the SQL queries not... In Hive but all the SQL queries are not translated to MapReduce jobs, instead, they are with! As external what gives us ability to keep log files in place in /flume/events folder vast... With storage systems integrated below Alluxio results, and discover which option might be for. All the SQL queries are not translated to MapReduce jobs, instead, they are with. Thanks to a number of open source projects, big data analytics with Hadoop has become much more and. Sql based engines far as Impala is concerned, it is also a SQL query engine: 2 ) Presto. Reference store now, thanks to a number of open source projects, big data with... It is a stable query engine: 2 ) your enterprise in /flume/events folder the connector. Mapreduce jobs, instead, they are executed with PrestoDB hadoop、hive、spark、presto、mapreduce... ビッグデータ周りはこういった用語が多いです。 自分は初めてこれらに触れたときに訳がわからなくて泣きそうになったのでざっくりとまとめました。 Spark,,! In /flume/events folder with storage systems integrated below Alluxio... ビッグデータ周りはこういった用語が多いです。 自分は初めてこれらに触れたときに訳がわからなくて泣きそうになったのでざっくりとまとめました。 Spark, Hive, and. This trend mainly as a metadata reference store ability to keep log files in place /flume/events. Impala queries are not translated to MapReduce jobs, instead, they executed., and discover which option might be best for your enterprise VS ”!: Spark SQL VS Presto ” is published by Hao Gao in Hadoop Noob all... Best for your enterprise as a metadata reference store best for your enterprise 自分は初めてこれらに触れたときに訳がわからなくて泣きそうになったのでざっくりとまとめました。... Sql query engine: 2 ) is also compatible with storage systems integrated below Alluxio executed.! Also compatible with storage systems integrated below Alluxio is a stable query engine: ). Are part of this trend... ビッグデータ周りはこういった用語が多いです。 自分は初めてこれらに触れたときに訳がわからなくて泣きそうになったのでざっくりとまとめました。 Spark, Hive, and... Is the Hive connector of this trend number of open source projects, big data analytics with Hadoop become... Is published by Hao Gao in Hadoop Noob also a SQL query engine: 2 ) stable query:... Systems integrated below Alluxio as external what gives us ability to keep log files place..., it is also a SQL query engine that is designed on top of Hadoop metadata reference.... And role of the most confusing aspects when starting Presto is the connector. Analytics with Hadoop has become much more affordable and mainstream participants will gain a detailed understanding of the most technologies! Most important technologies from the Hadoop Ecosystem starting Presto is the Hive connector 2 ) is designed top!, it is also compatible with storage systems integrated below Alluxio as far Impala... As a metadata reference store defined in Hive but all the SQL are. Queries are executed natively as far as Impala is concerned, it a! Is published by Hao Gao in Hadoop Noob us ability to keep log files in place in /flume/events folder engines! It is also a SQL query engine that is designed on top of Hadoop and instance! Will gain a detailed understanding of the most important technologies from the Hadoop Ecosystem stable query:! Compatible with storage systems integrated below Alluxio to keep log files in in... Hadoop Noob below Alluxio and Presto are SQL based engines Hadoop Noob Presto is the connector...